

 Navigation

 	
 index

 	
 next |

 	ptah 0.9.dev0 documentation

Ptah

	Ptah Walkthrough
	Stepping through the code

	views.py

	render_includes

	render_messages

	homepage.pt

	Conclusion

	More Examples

	Database Structure
	ptah_blobs

	ptah_content

	ptah_nodes

	ptah_settings

	ptah_tokens

	ptah_db_versions

	Manage Interface
	Configuring

	Out-of-the-box Modules

	Extending

	Ptah Forms
	Form

	Fieldset

	Field

	Field Factory

	Examples

	Authentication Service
	Example

	User provider

	User resolver

	Password changer

	Principal searcher

	Superuser

	Command-line utilities
	Application Settings

	Application Information

	Data population

	Data migration

	Data population
	Define step

	Populate data during start up

	Command line script

	Data migration
	Create package migration

	Migration data during start up

	Notes

	Ptah Q & A
	What is scope of Ptah?

	Where does Pyramid and Ptah differ?

	Why does Ptah not use deform?

	Why does Ptah use a Folder paradigm?

	Why does Ptah use sqlite?

	SQLAlchemy is complex and scary

	Traversal, wtf?

	Layout vs. Macros/Inheritance

	Getting a pkg_resources.DistributionNotFound: myapp Exception

	Where did Paster Go?

	(OperationalError) no such table:

	API
	ptah

	ptah.cms

	ptah.form

	Pyramid directives

	Interfaces

	Ptah settings

	License

Subprojects

	Ptah Examples [https://github.com/ptahproject/examples] and its
associated documentation [http://ptah-examples.readthedocs.org/].

	ptah cmf [https://github.com/ptahproject/ptah_cms] and its
associated documentation [http://ptah-cmf.readthedocs.org/].

	ptah_crowd [https://github.com/ptahproject/ptah_crowd], an out-of-the-box user registration/management sub-system and
its associated documentation [http://ptah_crowd.readthedocs.org].

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2011-2015, RUNYAGA, LLC.
 Last updated on Jun 14, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ptah 0.9.dev0 documentation

Ptah Walkthrough

You should have a virtualenv with ptah installed. Let’s create an add-on:

~/venv/src$../bin/pcreate -t ptah_starter mypkg
~/venv/src$ cd mypkg
~/venv/src/mypkg$../../bin/python setup.py develop

Now let’s start the system. –reload will start the file watcher in paster and will restart the process any time a .py file is changed:

~/venv/src/mypkg$../../bin/pserve settings.ini --reload

Go to http://localhost:6543/ and click around. Things to look out for:

	There is a simple webpage based on the bootstrap CSS library.

	On the right hand side there is a tab that says DT and has a pyramid.
This is the pyramid_debugtoolbar which provides all sorts of useful
feedback during development.

	There is a button “Goto Ptah Manage UI”. This Management UI has
a lot of features for you to explore.

What you see on screen when you go to http://localhost:6543/ is a View registered with the / route under the mypkg folder in a file, views.py:

@view_config(renderer='mypkg:templates/homepage.pt',
 route_name='home')

class HomepageView(object):

 def __init__(self, request):
 self.request = request
..

There is no regular expression which matches /, but a name of a route, ‘home’. Let’s open up app.py in the same folder to see where the home route is defined. If you scan through the main() function you will see:

config.add_route('home', '/')

That is it. Let’s take this opportunity to review the main() function. All comments have been removed:

def main(global_config, **settings):

 config = Configurator(settings=settings,
 session_factory = session_factory,
 authentication_policy = auth_policy)
 config.include('ptah')

 config.ptah_init_sql()

 config.ptah_init_settings()

 config.ptah_init_manage(managers=('*',))

 Base = ptah.get_base()
 Base.metadata.create_all()

 config.add_route('home', '/')
 config.add_static_view('_mypkg', 'mypkg:static')
 config.scan()

 return config.make_wsgi_app()

Stepping through the code

	Instantiate a Pyramid Configurator.

	Notify Pyramid to run the ‘ptah’ extension.

	Set up the RDBMS. (See the “settings.ini” file for the connection string.)

	Activate ptah settings management with config.ptah_init_settings() which initializes additional ptah.settings and sends ptah.events.SettingsInitializing and ptah.events.SettingsInitialized.

	config.ptah_init_manage() enables the Ptah Manage Interface and manager=(‘*’,) allows anyone access to it.

	Set up the SQLAlchemy ORM and create tables if necessary.

	config.add_route(‘home’, ‘/’) registers / to the HomepageView

	config.add_static_view(‘_mypkg’, ‘mypkg:static’) allows you to call http://localhost:6543/_mypkg/app.css which you can see on filesystem, mypkg/static/app.css

	config.scan() imports all python modules in your application and performs registration. You will note there is no import .views inside the app.py module, because the scan makes that unnecessary.

	return config.make_wsgi_app() is Pyramid returning a configured WSGI application.

In summary, you put your application configuration inside of the function which will return a WSGI application. Any Pyramid extension, such as Ptah, is included via config.include(‘package_name’). We initialize Ptah. Then add your application views and routes using Pyramid syntax. We run a scan and then enable the Manager Interface. Lastly, return the configured WSGI application.

views.py

Now that we know how the application gets configured and we know how / calls the HomepageView, let’s look at how the static resources get included on the homepage. We will examine views.py and the template homepage.pt.

Let’s look at views.py:

import ptah

class HomepageView(object):

 def __init__(self, request):
 self.request = request
 ptah.include(request, 'bootstrap')
 ptah.include(request, 'bootstrap-js')

 def __call__(self):
 request = self.request
 self.rendered_includes = ptah.render_includes(request)
 self.rendered_messages = ptah.render_messages(request)
 return {}

Every time the view gets created it annotates the request object with its requirements, in this case “bootstrap” and “bootstrap-js”. Subsequenty, when Pyramid __calls__ the view, passing the view and the return value to the template, 2 additional functions are called: render_includes and render_messages. Both take the request object as a parameter.

render_includes

You specified what ptah.library you needed by using ptah.include in the constructor. Now we need to convert those into HTML for the <head> tag; we call ptah.render_includes which will return an HTML string ready to be included in the <head>. ptah.library supports dependencies and render_includes() will compute that dependency correctly.

render_messages

User performed actions such as submitting forms, logging in, or providing a user feedback notification is done with messages. These have been called “flash messages” in other web frameworks. Any messages your application has generated must be consumed (i.e. rendered) by calling render_messages().

Even though we do not create messages in the homepage.pt template, we still want to pump any previously generated messages. For instance, you might experiment with the Ptah Manage interface and somehow be redirected to the Homepage – you would want to see any messages created in previous requests immediately. This is why messages are usually handled in master (layout) templates.

homepage.pt

Now let’s go and look at the template which renders the HTML. It can be found in mkpkg/templates/homepage.pt and there are only a few lines of interest in the <head>:

<head>
 <meta charset="utf-8">
 <title>mypkg, made with Ptah!</title>
 ${structure: view.rendered_includes}
 <link type="text/css" rel="stylesheet"
 href="${request.static_url('empty:static/app.css')}" />
 <link rel="shortcut icon"
 href="${request.static_url('empty:static/ico/favicon.ico')}" />
</head>

This line:

${structure: view.rendered_includes}

...generates the HTML:

<link type="text/css" rel="stylesheet" href="http://localhost:6543/_ptah/static/bootstrap/bootstrap-1.4.0.min.css" />
<script src="http://localhost:6543/_ptah/static/jquery/jquery-1.7.min.js"> </script>
<script src="http://localhost:6543/_ptah/static/bootstrap/bootstrap-2.0.1.min.js"> </script>

Lastly to reference static assets this line:

<link rel="shortcut icon"
 href="${request.static_url('mypkg:static/ico/favicon.ico')}" />

...generates:

<link type="text/css" rel="stylesheet"
 href="http://localhost:6543/_mypkg/app.css" />

Conclusion

This demonstrates most of the view functionality. In the examples repository you can look at ptah_models for an example of using ptah.library. It ships with a colourpicker widget which requires a javascript library.

More Examples

There is a separate repository for examples [https://github.com/ptahproject/examples]. You can read the Examples documentation on-line at
http://ptah-examples.readthedocs.org [http://ptah-examples.readthedocs.org/en/latest/index.html].

 Copyright 2011-2015, RUNYAGA, LLC.
 Last updated on Jun 14, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ptah 0.9.dev0 documentation

Database Structure

If you add Ptah to your project there are some database schema requirements. You name your tables whatever you like.

ptah_blobs

This table provides the ability to support large binary objects. It is used by the ptah.cms.blob.Blob model.

	Name
	Type
	Null
	Default
	Comments

	id
	int
	False
	‘’
	PK, FK ptah_nodes.id

	mimetype
	varchar
	True
	‘’
	

	filename
	varchar
	True
	‘’
	

	size
	int
	True
	0
	

	data
	blob
	True
	
	

ptah_content

The ptah_content table provides a definition for base content model. It is used by the ptah.cms.Content model.

	Name
	Type
	Null
	Default
	Comments

	id
	int
	False
	‘’
	PK, FK ptah_nodes.id

	path
	varchar
	True
	
	

	name
	varchar
	True
	
	Maxlength 255

	title
	varchar
	True
	
	

	description
	varchar
	True
	
	

	created
	datetime
	True
	
	

	modified
	datetime
	True
	
	

	effective
	datetime
	True
	
	

	expires
	datetime
	True
	
	

	lang
	varchar
	True
	
	

ptah_nodes

The ptah_nodes table provides the base model for all data elements in the system. This table is used by the ptah.cms.Node model.

	Name
	Type
	Null
	Default
	Comments

	id
	int
	False
	‘’
	Primary key

	type
	varchar
	True
	‘’
	

	uri
	varchar
	False
	
	Maxlength=255

	parent
	varchar
	True
	‘’
	FK: ptah_nodes.uri

	owner
	varchar
	True
	‘’
	Principal URI

	roles
	text
	True
	‘{}’
	JSON

	acls
	text
	True
	‘[]’
	JSON

	annotations
	varchar
	True
	‘{}’
	JSON

ptah_settings

The ptah_settings table provides key, value for internal ptah settings machinery, in particular the ptah.settings.SettingRecord model.

	Name
	Value
	Null
	Default
	Comments

	name
	varchar
	False
	
	Primary key

	value
	varchar
	True
	‘’
	

ptah_tokens

The ptah_tokens table provides a space for transient tokens which are generated by application, such as password-reset tokens. You use the token service API but this table is used by ptah.token.Token model table.

	Name
	Value
	Null
	Default
	Comments

	id
	int
	False
	
	Primary key

	token
	varchar
	True
	
	MaxLegnth 48

	valid
	datetime
	True
	
	

	data
	varchar
	True
	
	

	type
	varchar
	True
	
	MaxLength 48

ptah_db_versions

The ptah_db_versions table contains migration revisions information.

	Name
	Value
	Null
	Default
	Comments

	package
	str
	False
	
	Primary key

	version_num
	varchar
	True
	
	MaxLegnth 32

 Copyright 2011-2015, RUNYAGA, LLC.
 Last updated on Jun 14, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ptah 0.9.dev0 documentation

Manage Interface

The Ptah Management UI is a dashboard into your application. The Manage
Interface is simple, extensible, and has quite a few features out of the box.

By default the Manage Interface is disabled.

managers sequence are login attributes from the ptah.auth_service:

>> from ptah import auth_service
>> print auth_service.get_current_principal().login
>> runyaga@gmail.com

Configuring

The Manage Interface is configured through Ptah Settings. You will do this inside of your WSGI entry point where you return make_wsgi_app(). config is the Pyramid configurator.:

config.ptah_init_manage(
 managers = ['*'],
 disable_modules = ['rest', 'introspect', 'apps', 'permissions', 'settings'])

Enable

Inside of Ptah Settings you can set the managers argument the userid’s you want to allow access. * means everyone. By default it is empty and no one is allowed access. Granting everyone:

managers = ['*']

Granting a few people:

managers = ['bob@dobbs.com', 'runyaga@gmail.com']

Disable

By default the Manage Interface is disabled. If Manage Interface is enabled but you want to prevent users from able to access it add the following to your .ini file:

ptah.manage = ""

Out-of-the-box Modules

The listing of modules you see when you open up http://localhost:6543/ptah-manage interface are all modules which your account has permission to view. Below are the out-of-the-box modules and a description.

REST

This module provides a interactive javascript REST introspector for the Ptah application. If you want to see this in action see the ptah_minicms in examples repository.

Introspect

A comprehensive view into all registrations in your application. It provides mechanisms to query URI’s, see events registered, subscribers, and you can jump directly to the source code where registration takes place.

Permissions

A list of permission sets which are used by all applications running in the system.

Settings

Listing of all settings for Pyramid and Ptah. Ptah has extra settings features. This settings module will show more variables than the .ini file that you used to start Pyramid. These extra settings are from Ptah such as ptah.formatter strings.

SQLAlchemy

Uses SQLAlchemy reflection capabilities to display all tables & rows that are accessible in the database. If a table is polymorphic it is not editable.

Models

CRUD (CReate Update and Delete) interface for models. Displays a list of registered models, allows you to modify the records.

Applications

A list of all Ptah applications registered in the system.

Field types

A preview of most registered form Fields in the system. If a field does not provide a preview it will now show up. You can see how each field will be rendered.

Extending

The simplest module example to look at is in ptah/manage/rest.py which registers a template.

Module

Create a class which subclasses ptah.manage.PtahModule. Decorate the class with ptah.manage.module() decorate. The label you register using the manage.module decorator is the internal key for that module. If you wanted to disable it you would use this name in the ptah_settings[‘disable_modules’] registration.

An example:

import ptah

@ptah.manage.module('rest')
class RestModule(ptah.manage.PtahModule):
 """
 REST Introspector
 """
 title = 'REST Introspector'

View

The module views for the Manage Interface use traversal. It is important to note that you do not have to use ptah.View but you will need to use wrapper so your template will look like the rest of the Manage Interface. Here is an example, again, from the REST module:

from pyramid.view import view_config

@view_config(
 context=RestModule,
 wrapper=ptah.wrap_layout(),
 renderer='ptah.manage:templates/rest.pt')

class RestModuleView(ptah.View):
 def update(self):
 self.url = self.request.params.get('url','')

Nothing special. Just a Pyramid view with wrapper=ptah.wrap_layout() and you can do whatever you like in that view.

 Copyright 2011-2015, RUNYAGA, LLC.
 Last updated on Jun 14, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ptah 0.9.dev0 documentation

Ptah Forms

ptah.form is an optional form library package. It provides some benefits when using it with the integrated environment such as autogeneration of forms for models, validation using the sqlalchemy constraints, and JSON representations for the REST api.

Form

Supports HTML generation, CSRF protection, additional field validation.

Form Validation

The default form validation uses CSRF prtoection to validate data input.

Fieldset

A ordered dictionary of Field instances. Fieldset supports validation and extraction.

Fieldset Validation

Is used when you have validation dependencies between Fields. For instance if Field Y depends

Fieldset Extraction

Internal implementation details and only needed for expert usage. Possibly needs renaming or refactoring.

Field

Fields are important in Ptah not only because its how forms are used in the HTML interface but they are also used in the REST interface. For instance when you send update via HTTP (html POST or json POST) the same field implementation is used for deserialization and validation.

Field Serialization

	serialize converts the field and data python structure into string representation. e.g. dattime.date(2011, 12, 12) into ‘2011-12-12’.

	deserailize converts a string representation into the internal representation. e.g. 2011-12-12 into datetime.date(2011, 12, 12)

Field Modes

Display mode and input mode.

Field Validation

Specific validation rules or whether a field is required is validated through the field validation.

	1
2
3
4
5
6
7

	 TELEPHONE_REGEX = u'^\(?([0-9]{3})\)?[-.]?([0-9]{3})[-.]?([0-9]{4})$'
 class Telephone(form.Regex):
 """ Telephone number validator """
 def __init__(self, msg=None):
 if msg is None:
 msg = "Invalid telephone number"
 super(Telephone, self).__init__(TELEPHONE_REGEX, msg=msg)

A ptah.form.Field accepts a validator in its constructor. The
fields’ validator will be called by the form with both field and value
as parameters.

	1
2
3
4
5

	 form.TextField(
 'phone',
 title = u'Telephone number',
 description=u'Please provide telephone number',
 validator = Telephone()),

Field Extraction

Extracts the value from request.

Field Factory

Expert level usage. This is how Ptah’s internals work.

Examples

There are 2 form examples which can be found in ptah_models package in
the examples repository [https://github.com/ptahproject/examples]. You can find both examples in ptah_models/views.py.

Manual Form & Fieldset

The contact-us form in ptah_models.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

	 contactform = form.Form(context, request)
 contactform.fields = form.Fieldset(
 form.TextField(
 'fullname',
 title = u'First & Last Name'),

 form.TextField(
 'phone',
 title = u'Telephone number',
 description=u'Please provide telephone number',
 validator = Telephone()),

 form.TextField(
 'email',
 title = u'Your email',
 description = u'Please provide email address.',
 validator = form.Email()),

 form.TextAreaField(
 'subject',
 title = u'How can we help?',
 missing = u''),
)

 # form actions
 def cancelAction(form):
 return HTTPFound(location='/')

 def updateAction(form):
 data, errors = form.extract()

 if errors:
 form.message(errors, 'form-error')
 return

 # form.context is ...
 form.context.fullname = data['fullname']
 form.context.phone = data['phone']
 form.context.email = data['email']
 form.context.subject = data['subject']

 # You would add any logic/database updates/insert here.
 # You would probably also redirect.

 log.info('The form was updated successfully')
 form.message('The form was updated successfully')

 contactform.label = u'Contact us'
 contactform.buttons.add_action('Update', action=updateAction)
 contactform.buttons.add_action('Cancel', action=cancelAction)

 # form default values
 contactform.content = {}

 # compute the form
 result = contactform.update()
 if isinstance(result, HTTPFound):
 return result

 # generate HTML from form
 html = contactform.render()

Manual Form & Auto-Fieldset

In the ptah_models package there is a content model, Link. This model can
be found in ptah_models/models.py. This code-snippet is found in
the ptah_models/views.py.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

	 linkform = form.Form(context,request)
 linkform.fields = models.Link.__type__.fieldset

 def cancelAction(form):
 return HTTPFound(location='/')

 def updateAction(form):
 data, errors = form.extract()
 if errors:
 form.message(errors, 'form-error')
 return

 link = models.Link(title = data['title'],
 href = data['href'],
 color = data['color'])
 ptah.get_session().add(link)

 form.message('Link has been created.')
 return HTTPFound(location='/')

 linkform.label = u'Add link'
 linkform.buttons.add_action('Add', action=updateAction)
 linkform.buttons.add_action('Cancel', action=cancelAction)

 result = linkform.update() # prepare form for rendering
 if isinstance(result, HTTPFound):
 return result

 rendered_form = linkform.render()

Everything Manual

Using form without context and request.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

	 from ptah import form
 from ptah_models.models import Link

 def action1(form):
 print ('action1', form)

 def action2(form):
 print ('action2', form)

 eform = form.Form(None, None)
 eform.params = {}
 eform.method = 'params'
 eform.fields = Link.__type__.fieldset

 eform.buttons.add_action('Test submit', name='ac1', action=action1)
 eform.buttons.add_action('Test action2', name='ac2', action=action2)

 print "==== execute action1 ===="
 eform.params = {'%sbuttons.ac1'%eform.prefix: 'value'}
 eform.update()

 print
 print "==== extract data ====="
 data, errors = eform.extract()

 print
 print "DATA:"
 pprint(data)

 print
 print "ERRORS:"
 pprint(errors)

Class-based Form

Example of subclassing ptah.form.Form.

 Copyright 2011-2015, RUNYAGA, LLC.
 Last updated on Jun 14, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ptah 0.9.dev0 documentation

Authentication Service

Need to integrate user logins to new authentication service? e.g. using
LDAP, OAuth, Openid, Mongo, or ZODB to source user credentials.

There are 4 facilities of which 2 are optional:

	User provider, required

	User resolver, required

	Password changer, optional

	User searcher, optional

Example

You can find an “in-memory” user provider in examples/auth_provider.py

User provider

A Principal (User) must have at least 3 attributes:

	user.uri, which must be resolvable to the User model

	user.login, which is identifier such as email

	user.name, human readable user name

The Provider class provides 2 methods:

	authenticate, which takes a mapping {‘login’:’user’, ‘password’:’pw’}

	get_principal_bylogin, which takes a login string and returns User

You register a Provider by calling ptah.register_auth_provider and
provide a uri scheme and instance.

User resolver

Resolvers in Ptah are the way we indirect lookup between components. For
instance, instead of storing the primary key of the user for say, the
ptah.cms.node.Owner field; we make that a string and store a URI. URIs
can be resolved into a object.

This code registeres a function which returns a object given a URI:

@ptah.register_uri_resolver('user+crowd', 'Crowd principal resolver')
def getPrincipal(uri):
 return User.get(uri)

Any uri prefixed with ‘user+crowd’ will be sent to this function, getPrincipal.
For instance, uri.resolve(‘user+crowd:bob’) would be sent to getPrincipal to
return a Principal with that uri.

Password changer

A function which is responsible for changing a user’s password. An example:

ptah.pwd_tool.register_password_changer('user+crowd', change_pw)

Password changer is optional.

Principal searcher

A function which accepts a string and returns a iterator. This is registered
with URI scheme and function:

import ptah
ptah.register_principal_searcher('user+crowd', search)

Superuser

There is another authentication service, ptah+auth which provides a sole
superuser Principal. The name is superuser. It is a special Principal.
You can not login with this Prinipcal. It is useful for integration tests.

 Copyright 2011-2015, RUNYAGA, LLC.
 Last updated on Jun 14, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ptah 0.9.dev0 documentation

Command-line utilities

Your ptah application can be controlled and inspected using a variety
of command-line utilities. These utilities are documented in this chapter.

Application Settings

You can use the ptah-settings command in a terminal window to print a
summary of settings to your application registered with
ptah.register_settings() api. Much like the any pyramid
command, the ptah-settings command accepts one argument with the
format config_file#section_name. The
config_file is the path to your application’s .ini file, and
section_name is the app section name inside the .ini file which
points to your application. By default, the section_name is main and
can be omitted.

For example:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	[fafhrd@... MyProject]$../bin/ptah-settings development.ini

* Ptah settings (ptah)

 - ptah.secret: Authentication policy secret (TextField: secret-
 ptah!)
 The secret (a string) used for auth_tkt cookie signing

 - ptah.manage: Ptah manage id (TextField: ptah-manage)

...

By default ptah-settings shows all sections. It possible to show
only certain settings section like “ptah” or “format”.

It is possible to print all settings in .ini format.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	[fafhrd@... MyProject]$../bin/ptah-settings development.ini -p
[DEFAULT]
format.date_full = "%%A, %%B %%d, %%Y"
format.date_long = "%%B %%d, %%Y"
format.date_medium = "%%b %%d, %%Y"
format.date_short = "%%m/%%d/%%y"
format.time_full = "%%I:%%M:%%S %%p %%Z"
format.time_long = "%%I:%%M %%p %%z"
format.time_medium = "%%I:%%M %%p"
format.time_short = "%%I:%%M %%p"
format.timezone = "us/central"
ptah.disable_models = []
ptah.disable_modules = []
...
ptah.pwd_letters_digits = false
ptah.pwd_letters_mixed_case = false
ptah.pwd_manager = "plain"
ptah.pwd_min_length = 5

Application Information

You can use the ptah-manage command in a terminal window to print a
summary of different information of your application. The ptah-manage
command accepts one argument with the format config_file#section_name.

List management modules

Use --list-modules argument to the ptah-manage to list all
registered ptah management modules.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	[fafhrd@... MyProject]$../bin/ptah-manage development.ini --list-modules

* apps: Applications (disabled: False)
 A listing of all registered Ptah Applications.

* crowd: User management (disabled: False)
 Default user management. Create, edit, and activate users.

* fields: Field types (disabled: False)
 A preview and listing of all form fields in the application. This
 is useful to see what fields are available. You may also interact
 with the field to see how it works in display mode.

...

List db models

Use --list-models argument to the ptah-manage to list all
registered ptah models.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	[fafhrd@... MyProject]$../bin/ptah-manage development.ini --list-models

* cms-type:app: Application (disabled: False)
 Default ptah application

 class: ApplicationRoot
 module: MyProject.root
 file: .../root.pyc

...

Data population

You can use the ptah-populate command in a terminal window to execute a
populate steps registered with ptah.populate() api. Much like
the any pyramid command, the ptah-populate command accepts one argument
with the format config_file#section_name.

Use -l argument to list all registered steps.

	1
2
3
4
5
6
7

	[fafhrd@... MyProject]$../bin/ptah-populate development.ini -l

* ptah-db-schema: Create db schema (active)

* ptah-crowd-admin: Create admin user (active)

...

It shows step name, then step title, and activity state. If step is active
it is beeing executed automatically with -a argument.

Use -a argument to execute all active steps.

	1
2
3
4
5
6
7
8

	[fafhrd@... MyProject]$../bin/ptah-populate development.ini -a
2012-01-03 12:43:46,796 INFO [ptah][MainThread] Executing populate step: ptah-db-schema
2012-01-03 12:43:46,797 INFO [ptah][MainThread] Creating db table `ptah_crowd`.
2012-01-03 12:43:46,931 INFO [ptah][MainThread] Creating db table `ptah_blobs`
...
2012-01-03 12:43:48,087 INFO [ptah][MainThread] Executing populate step: ptah-crowd-admin
2012-01-03 12:43:48,092 INFO [ptah_crowd][MainThread] Creating admin user `admin` Ptah admin
...

Its possible to execute inactive steps or specific step with all required
steps. Specify step names in command line after your ini file.

	1

	[fafhrd@... MyProject]$../bin/ptah-populate development.ini ptah-db-schema ptah-crowd-admin

Data migration

You can use the ptah-migrate command in a terminal window to execute a
migration steps registered with ptah.register_migration() api.
Much like the any pyramid command, the ptah-migrate command accepts
first argument with the format config_file#section_name.

Use list argument to list all registered migrations.

	1
2
3
4
5
6
7

	[fafhrd@... MyProject]$../bin/ptah-migrate development.ini list

* ptah: Ptah database migration
 ptah:migrations
 /...src/ptah/ptah/migrations

...

Use revision argument to create new revision for registered migration.

	1
2
3

	[fafhrd@... MyProject]$../bin/ptah-migrate development.ini revision ptah
 Generating /../src/ptah/ptah/migrations/3fd73c8b8727.py...done
...

Additional arguments:

-r specify custom revision id. revision id has to contain only
letters and numbers.

-m specify revision message

Full command can look like:

	1
2

	[fafhrd@... MyProject]$../bin/ptah-migrate development.ini revision ptah -r 001 -m "Add new column X"
 ...

Use upgrade argument to upgrade package to specific revision. You can
specify one or more packages after upgrade argument.

	1
2
3

	[fafhrd@... MyProject]$../bin/ptah-migrate development.ini upgrade ptah
2012-01-11 17:00:44,506 INFO [ptah.alembic] ptah: running upgrade None -> 0301
...

To specify specific revision number use : and revision number. For example
ptah:0301

Use current argument to check current package revision. You can
specify any number of package after current argument. If package is not
specified script shows information for all packages.

	1
2

	[fafhrd@... MyProject]$../bin/ptah-migrate development.ini current ptah
Package 'ptah' rev: 0301(head) Migration to ptah 0.3

Use history argument to check migrations history.

	1
2
3
4
5

	[fafhrd@... MyProject]$../bin/ptah-migrate development.ini history ptah

ptah
====
0301: Ptah 0.3.0 changes

 Copyright 2011-2015, RUNYAGA, LLC.
 Last updated on Jun 14, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ptah 0.9.dev0 documentation

Data population

Data population process consists of populate steps. Each step can be marked
as active or inactive. Active steps are executed by ptah_populate
pyramid directive and ptah-populate -a `` command-line script.
also it is possible to specify ``requires for each step. requires
is a list of steps that should be executed before step.

Define step

Interface of populate step is very simple. It is function that accepts
one argument pyramid registry ptah.interfaces.populate_step.

import ptah

@ptah.populate('custom-populate-step')
def populate_step(registry):
 ...

Check ptah.populate for detailed description of this directive.

Populate data during start up

Use ptah_populate() pyramid directive for populate system data
during startup.

import ptah
from pyramid.config import Configurator

def main(global_settings, **settings):

 config = Configurator(settings=settings)
 config.include('ptah')

 ...

 config.ptah_populate()

 ...

 return config.make_wsgi_app()

Populate steps are executed after configration commited.

Command line script

Ptah providers ptah-populate command-line script for data population.

[fafhrd@... MyProject]$../bin/ptah-populate development.ini -a
...

Check Data population for detailed description of this script.

 Copyright 2011-2015, RUNYAGA, LLC.
 Last updated on Jun 14, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ptah 0.9.dev0 documentation

Data migration

Ptah migration based on alembic [http://readthedocs.org/docs/alembic/] package.
Ptah adds per package migration. Migration is not required alembic
environment.

Create package migration

You can use alembic operations [http://readthedocs.org/docs/alembic/en/latest/ops.html] for ddl manipulation. Here are the steps for ptah migrations
generation.

	Create directory in your package that will contain migration steps.

For example:

	1
2

	$ cd ptah_minicms
$ mkdir migrations

So directory listing should look like this:

	1
2
3
4
5
6

	$ ls -l
drwxrwxr-x 2 fafhrd fafhrd 4096 2012-01-11 15:58 migrations
drwxrwxr-x 2 fafhrd fafhrd 4096 2011-12-16 11:33 static
drwxrwxr-x 2 fafhrd fafhrd 4096 2011-12-29 14:50 templates
-rw-rw-r-- 1 fafhrd fafhrd 1457 2011-12-29 14:50 actions.py
...

	Register package migrations with ptah.register_migration() api.

	1
2
3
4
5

	import ptah

ptah.register_migration(
 'ptah_minicms', 'ptah_minicms:migrations',
 'Ptah minicms example migration')

First parameter is package name, second parameter is asset style path and
third parameter migration title.

	To create new revision you should use ptah-migrate script.

	1
2

	$ /bin/ptah-migrate settings.ini revision ptah_minicms -r 001 -m "Add column"
Generating /path-to-virtualenv/ptah_minicms/migrations/001.py...done

Generated script contains empty update() and downgrade() function.
Add code that does migration from previous revision to this function.

	Now you can use ptah-migrate script to execute migration steps.

	1
2

	$ bin/ptah-migrate settings.ini upgrade ptah_minicms
2012-01-11 16:14:42,657 INFO [ptah.alembic] ptah_minicms: running upgrade None -> 001

Check Data migration chapter for ptah-migrate script detailed description.

Migration data during start up

Use ptah_migrate() pyramid directive for migration data schema
during startup.

import ptah
from pyramid.config import Configurator

def main(global_settings, **settings):

 config = Configurator(settings=settings)
 config.include('ptah')

 ...

 config.ptah_migrate()

 ...

 return config.make_wsgi_app()

Migration steps are executed after configration commited.

Notes

	Ptah stores package revision numbers in ptah_db_versions table. During
data population process ptah checks if ptah_db_versions table contains
version info, if it doesnt contain version information ptah just set
latest revision without running migration steps. It assumes if there is no
version information then database schema is latest.

	ptah-migrate script executes POPULATE_DB_SCHEMA populate step before
running any upgrade steps.

 Copyright 2011-2015, RUNYAGA, LLC.
 Last updated on Jun 14, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ptah 0.9.dev0 documentation

Ptah Q & A

What is scope of Ptah?

Ptah aims to provide a framework which makes low level choices for developers so the programmer can get on with solving their problems on a unrealistic deadline. ptah.cms is an API it is not an applictaion. The API does not have advanced CMS functionality such as staging, workflow or versioning. That is someone elses job.

Ptah is a framework, an implementation and set of opinions around the Pyramid web framework.

Ptah, like Pyramid, supports both URL dispatch, traversal. Unlike Pyramid it provides a data model, content heirarchy, form library, and high level security primitives (permissions, roles, and principals). Any of this is additional to Pyramid and augements your application.

Where does Pyramid and Ptah differ?

Ptah attempts to provide a “full stack” on top of Pyramid whereas Pyramid urges you to find and use individual libraries.

Why does Ptah not use deform?

Ptah does not use deform; but you can. Ptah ships with a form subsystem, ptah.form which you should give a shot.

Why does Ptah use a Folder paradigm?

Ptah does not require a Folder paradigm or containment. examples/ptah_minicms demonstrates the features of ptah.cms and one of those features are content hierarchies. Thus the Page/Folder experience in ptah_minicms.

Why does Ptah use sqlite?

Ptah uses SQLAlchemy which supports many different database drivers. sqlite ships with Python obviating the need to install a separate database daemon. ptah.cms will not depend on database specific features to gain performance or scalability.

SQLAlchemy is complex and scary

SQLAlchemy is a comprehensive library and an effect of that is it can feel overwhelming when reviewing the documentation. SQLAlchemy is
the best thing we have in Python.

Traversal, wtf?

Traversal is not required. It is optional. It is a feature which can you use if you like. Traversal works quite well & if you have used Apache - you have used traversal - instead of a database Apache uses a filesystem.

Layout vs. Macros/Inheritance

Layouts are 100% optional. They provide an alternative for template
inheritance. Layouts are renderer independent. This means you can use Jinja, Chameleon, & Mako with the Layout subsystem.

Several reasons exist for Layouts:

	A layout is a view with a template. This provides a encapsulated template and view. Meaning a template which is used as a layout has its own view (methods, data, etc).

	The contract between layouts is a string. Layouts can only be passed a content string which is the result of rendering the “inner” block.

	Since layout’s work from the “inside-out” there is a desirable side-effect, by the time the <HEAD> layout is rendered all static assets (CSS, JS) that are requirements for form elements or for your custom view will have been computed. This is not possible to do generically with the ZPT/MACRO or the Jinja inheritance system.

	Layouts can be context dependent. This is a advanced usage. It is unclear if this is possible with other template composition mechanisms. This is a feature you will most likely need or use or understand why it is needed.

Getting a pkg_resources.DistributionNotFound: myapp Exception

This means that you did not run python setup.py develop on your package. This is Python and you need to add your
package to the python path/virtual environment. e.g.:

$ bin/pcreate -t template mypackage
$ cd mypackage
$../bin/python setup.py develop
$../bin/pserve settings.ini

Where did Paster Go?

ptah 0.1 used Pyramid 1.2 and Paster. Pyramid 1.3 removed the dependency on Paster and rolled the functionality directly into the pyramid framework. pcreate and pserver are scripts which are now generated by Pyramid.

(OperationalError) no such table:

Previously to ptah 0.3; all of the tables were created automatically without intervention. As of 0.3 you explicit must bootstrap your schema using ptah-populate script:

$ virtualenv/bin/ptah-populate settings.ini

The ptah-populate script takes the .INI settings file as a parameter. Once this completes you will be able to start your application. For details check
Data population chapter.

 Copyright 2011-2015, RUNYAGA, LLC.
 Last updated on Jun 14, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ptah 0.9.dev0 documentation

API

	ptah
	URI

	Layout

	Settings

	ACL

	Roles

	Permissions

	Security

	Password utils

	Utilities

	Status messages

	UI Actions

	Data population

	Data migration

	Events

	ptah.cms
	Content classes

	Content loading

	Type system

	Application Root/Factory/Policy

	Blob api

	Content schema

	Permissions

	ptah.form
	Form

	Field

	Button

	Vocabulary

	Validators

	Predefined fields

	Pyramid directives
	ptah_init_sql(prefix=’sqlalchemy.’)

	ptah_init_settings(settings=None)

	ptah_init_manage()

	ptah_init_mailer(mailer)

	ptah_auth_checker(checker)

	ptah_auth_provider(name, provider)

	ptah_principal_searcher(name, searcher)

	ptah_uri_resolver(schema, resolver)

	ptah_password_changer(schema, changer)

	ptah_layout(...)

	ptah_populate()

	ptah_populate_step()

	ptah_migrate()

	Interfaces
	Ptah interfaces

	Form interfaces

	Ptah settings

 Copyright 2011-2015, RUNYAGA, LLC.
 Last updated on Jun 14, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ptah 0.9.dev0 documentation

 	API

ptah

URI

Layout

Settings

ACL

	
ACLs

	ACLs dictionary contains all registered acl maps in the system.

Roles

	
Everyone

	

	
Authenticated

	

	
Owner

	

Permissions

	
DEFAULT_ACL

	

	
NOT_ALLOWED

	

	
NO_PERMISSION_REQUIRED

	

Security

	
auth_service

	Instance of ptah.authentication.Authentication class.

	
SUPERUSER_URI

	System user uri. Permission check always passes for user user.
It is possible to use it as effective user:

ptah.auth_service.set_effective_user(ptah.SUPERUSER_URI)

This allow to pass security checks for any user.

Password utils

	
pwd_tool

	Instance of ptah.password.PasswordTool class

Utilities

	
tldata

	

Status messages

UI Actions

Data population

	
POPULATE_DB_SCHEMA

	Id for database schema creation step. Use it as requires dependency
to make sure that db schema is cerated before execute any other steps.

Data migration

Events

Settings events

Content events

Principal events

Populate db schema

 Copyright 2011-2015, RUNYAGA, LLC.
 Last updated on Jun 14, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ptah 0.9.dev0 documentation

 	API

ptah.cms

Content classes

Content loading

Type system

Application Root/Factory/Policy

Blob api

	
blobStorage

	

	
class IBlob

	

	
class IBlobStorage

	

Content schema

	
class ContentSchema

	

	
class ContentNameSchema

	

Permissions

	
View

	

	
AddContent

	

	
DeleteContent

	

	
ModifyContent

	

	
ShareContent

	

	
NOT_ALLOWED

	

	
ALL_PERMISSIONS

	

 Copyright 2011-2015, RUNYAGA, LLC.
 Last updated on Jun 14, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ptah 0.9.dev0 documentation

 	API

ptah.form

Form

Field

Button

	
AC_DEFAULT

	

	
AC_PRIMARY

	

	
AC_DANGER

	

	
AC_SUCCESS

	

	
AC_INFO

	

Vocabulary

Validators

Predefined fields

Any field can be create with two different way.
Using field class:

field = ptah.form.TextField(
 'field',
 title='Text',
 description='Field description')

Or using field factory:

field = ptah.form.FieldFactory(
 'text', 'field',
 title='Text',
 description='Field description')

 Copyright 2011-2015, RUNYAGA, LLC.
 Last updated on Jun 14, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ptah 0.9.dev0 documentation

 	API

Pyramid directives

Pyramid Configuration directive from Ptah. An example:

auth_policy = AuthTktAuthenticationPolicy('secret')
session_factory = UnencryptedCookieSessionFactoryConfig('secret')

def main(global_config, **settings):
 """ This is your application startup."""

 config = Configurator(settings=settings,
 session_factory = session_factory,
 authentication_policy = auth_policy)
 config.include('ptah')

 config.ptah_init_settings()
 config.ptah_init_sql()

ptah_init_sql(prefix=’sqlalchemy.’)

This directive creates new SQLAlchemy engine and bind session and
declarative base.

	param prefix:	INI settings prefix, default is sqlalchemy.

Example:

[app:ptah]
sqlalchemy.url = sqlite:///%(here)s/var/db.sqlite

ptah_init_settings(settings=None)

Initialize settings management system and load settings from system
settings. Also it sends ptah.events.SettingsInitializing
and then ptah.events.SettingsInitialized. By default
it reads info from config.registry.settings. Its possible to pass
custom settings as first parameter.

	param settings:	Custom settings

config = Configurator()
config.include('ptah')

initialize ptah setting management system
config.ptah_initialize_settings()
..
config.ptah_initialize_settings({'ptah.managers': '["*"]'})

ptah_init_manage()

Initialize and enable ptah management subsystem.

	param name:	Management ui prefix. Default is ptah-manage.

	param access_manager:

		Set custom access manager.

	param managers:	List of user logins with access rights to
ptah management ui.

	param manager_role:

		Specific role with access rights to ptah management ui.

	param disable_modules:

		List of modules names to hide in manage ui

	param enable_modules:

		List of modules names to enable in manage ui

Also it possible to enable and configure management subsystem with
settings in ini file:

[app:ptah]

ptah.manage = "ptah-manage"
ptah.managers = ["*"]
ptah.manager_role = ...
ptah.disable_modules = ...

ptah_init_mailer(mailer)

Set mailer object. Mailer interface is compatible with repoze.sendmail
and pyramid_mailer. By default stub mailer is beeing used.

	param mailer:	Mailer object

ptah_auth_checker(checker)

Register auth checker.
Checker function interface ptah.interfaces.auth_checker

	param checker:	Checker function

config = Configurator()
config.include('ptah')

def my_checker(info):
 ...

config.ptah_auth_checker(my_checker)

ptah_auth_provider(name, provider)

Register auth provider. Authentication provider
interface ptah.interfaces.AuthProvider

ptah_principal_searcher(name, searcher)

Register principal searcher function.
Principal searcher function interface
ptah.interfaces.principal_searcher()

ptah_uri_resolver(schema, resolver)

Register resolver for given schema.
Resolver function interface ptah.interfaces.resolver()

	param schema:	uri schema

	param resolver:	Callable object that accept one parameter.

config = Configurator()
config.include('ptah')

def my_resolver(uri):

config.ptah_uri_resolver('custom-schema', my_resolver)

ptah_password_changer(schema, changer)

Register password changer function for specific user uri schema.
Password changer interface ptah.intefaces.password_changer()

	param schema:	Principal uri schema.

	param changer:	Function

config = Configurator()
config.include('ptah')

config.ptah_password_changer('custom-schema', custom_changer)

ptah_layout(...)

Registers a layout.

	param name:	Layout name

	param context:	Specific context for this layout.

	param root:	Root object

	param parent:	A parent layout. None means no parent layout.

	param renderer:	A pyramid renderer

	param route_name:

		A pyramid route_name. Apply layout only for
specific route

	param use_global_views:

		Apply layout to all routes. even is route
doesnt use use_global_views.

	param view:	Layout implementation (same as for pyramid view)

config = Configurator()
config.include('ptah')

config.ptah_layout(
 'page', parent='page',
 renderer='ptah:template/page.pt')

config.add_view('
 index.html',
 wrapper=ptah.wrap_layout(),
 renderer = '...')

ptah_populate()

Execute active populate steps.

config = Configurator()
config.include('ptah')

config.ptah_populate()

ptah_populate_step()

Register populate step.
Step interface ptah.interfaces.populate_step.

	param name:	Step name

	param factory:	Step callable factory

	param title:	Snippet context

	param active:	View implementation

	param requires:	List of step names that should be executed before
this step.

config = Configurator()
config.include('ptah')

def create_db_schemas(registry):
 ...

config.ptah_populate_step('ptah-create-db-schemas',
 factory=create_db_schemas,
 title='Create db scehams', active=True, requires=())

ptah_migrate()

Execute all registered database migration scripts.
Check Data migration chapter for detailed description.

config = Configurator()
config.include('ptah')

config.ptah_migrate()

 Copyright 2011-2015, RUNYAGA, LLC.
 Last updated on Jun 14, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ptah 0.9.dev0 documentation

 	API

Interfaces

Ptah interfaces

Form interfaces

 Copyright 2011-2015, RUNYAGA, LLC.
 Last updated on Jun 14, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ptah 0.9.dev0 documentation

 	API

Ptah settings

All .INI settings set in file are in JSON format. All examples in this document are given in JSON format. An example entry in .ini file:

[app:ptah]
ptah.managers = ["*"]
ptah.pwd_manager = "ssha"

All values passed inside of Pyramid configurator are in Python format:

config.ptah_init_manage(
 managers = ['*'],
 disable_modules = ['rest', 'introspect', 'apps', 'permissions'])

ptah.disable_modules

Hide Modules in Management UI. List of modules names to hide in manage ui. e.g.:

ptah.disable_modules = ["rest", "apps"]

ptah.enable_modules

Enable Modules in Management UI. List of modules names to enable in
manage ui. e.g.:

ptah.enable_modules = ["rest", "apps"]

ptah.disable_models

Provides a mechanism to hide models in the Model Management UI. A list of models to hide in model manage ui. e.g.:

ptah.disable_models = ["link"]

ptah.email_from_name

Site admin name. Default is Site administrator. e.g.:

ptah.email_from_name = "Site Administrator"

ptah.email_from_address

Site admin email address. e.g.:

ptah.email_from_address = "no-reply@myapplication.com"

ptah.manage

Ptah manage id. Default value is ptah-manage. Also this value is being
used for ptah management url http://localhost:6543/ptah-manage/... e.g.:

ptah.manage = "manage"

The Ptah Manage UI would then be available at http://localhost:6543/manage

ptah.manager_role

Specific role with access rights to ptah management ui.

ptah.managers

List of user logins with access rights to ptah management ui. Default value is empty string, ‘’ which means no one logins allowed. “*” allows all principals. Must be a list of strings, e.g.:

ptah.managers = ["userid"]

ptah.pwd_manager

Password manager (plain, ssha, ..)

ptah.pwd_min_length

Minimum length for password.

ptah.pwd_letters_digits

Use letters and digits in password. Boolean value.

ptah.pwd_letters_mixed_case

Use letters in mixed case. Boolean value.

ptah.secret

Authentication policy secret. The secret (a string) used for
auth_tkt cookie signing. e.g.:

ptah.secret = "s3cr3t"

ptah.db_skip_tables

Do not create listed tables during data population process. e.g.:

ptah.db_skip_tables = ["ptah_nodes", "ptah_content"]

ptah.default_roles

List of default principal roles:

ptah.default_roles = ["role:Editor"]

 Copyright 2011-2015, RUNYAGA, LLC.
 Last updated on Jun 14, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	ptah 0.9.dev0 documentation

License

This software is licensed under a Simplified BSD License. Read more http://en.wikipedia.org/wiki/BSD_licenses

Copyright (c) 2011, RUNYAGA, LLC. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

THIS SOFTWARE IS PROVIDED BY RUNYAGA, LLC. ‘’AS IS’’ AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The views and conclusions contained in the software and documentation are those of the
authors and should not be interpreted as representing official policies, either expressed
or implied, of RUNYAGA, LLC..

 Copyright 2011-2015, RUNYAGA, LLC.
 Last updated on Jun 14, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	ptah 0.9.dev0 documentation

Index

 A
 | B
 | C
 | D
 | E
 | I
 | M
 | N
 | O
 | P
 | S
 | T
 | V

A

 	

 	AC_DANGER (built-in variable)

 	AC_DEFAULT (built-in variable)

 	AC_INFO (built-in variable)

 	AC_PRIMARY (built-in variable)

 	AC_SUCCESS (built-in variable)

 	

 	ACLs (built-in variable)

 	AddContent (built-in variable)

 	ALL_PERMISSIONS (built-in variable)

 	auth_service (built-in variable)

 	Authenticated (built-in variable)

B

 	

 	blobStorage (built-in variable)

C

 	

 	ContentNameSchema (built-in class)

 	

 	ContentSchema (built-in class)

D

 	

 	DEFAULT_ACL (built-in variable)

 	

 	DeleteContent (built-in variable)

E

 	

 	Everyone (built-in variable)

I

 	

 	IBlob (built-in class)

 	

 	IBlobStorage (built-in class)

M

 	

 	ModifyContent (built-in variable)

N

 	

 	NO_PERMISSION_REQUIRED (built-in variable)

 	

 	NOT_ALLOWED (built-in variable), [1]

O

 	

 	Owner (built-in variable)

P

 	

 	POPULATE_DB_SCHEMA (built-in variable)

 	

 	pwd_tool (built-in variable)

S

 	

 	ShareContent (built-in variable)

 	

 	SUPERUSER_URI (built-in variable)

T

 	

 	tldata (built-in variable)

V

 	

 	View (built-in variable)

 Copyright 2011-2015, RUNYAGA, LLC.
 Last updated on Jun 14, 2015.
 Created using Sphinx 1.3.1.

 _static/file.png

_static/minus.png

_static/plus.png

package-structure.html

 Navigation

 		
 index

 		ptah 0.9.dev0 documentation »

Package structure

There are ~10 top level packages in ptah. Each package exports its public
api inside of the __init__.py of the package. For instance, ptah/cms/__init__.py
contains all of the public API. Anything not defined in the public API is
considered an implementation detail and will not be documented.

top level package

ptah/__init__.py contains public API that is used nearly everywhere.
these APIs include security, uri, principal events, & token system.
canonical WSGI factory, make_wsgi_app.

ptah.cms

This contains the core CMS functionality such as Node, Content, Type, events,
ApplicationRoot. Facilities such as REST action registration also are public
API for this package.

ptah.cms is required.

ptah.config

configuration directives and settings. helper package which provides
declarative style configuration of ptah functionality.

ptah.config is required.

ptah.form

form library which contains fields and form generation.

ptah.form is required.

ptah.manage

is located at /ptah-manage by default also known as Ptah Manage. this
provide introspection facilities for your pyramid application. also gives
nice interface into SQLAlchemy models.

ptah.manage is optional.

ptah.view

contains the view, library facilitiy, layout, static resource
registration, flash messages, formatters.

ptah.view is required.

 © Copyright 2011-2015, RUNYAGA, LLC.
 Last updated on Jun 14, 2015.
 Created using Sphinx 1.3.1.

_static/ajax-loader.gif

_static/comment.png

overview.html

 Navigation

 		
 index

 		ptah 0.9.dev0 documentation »

Why Ptah?

Because at Enfold Systems we build complicated systems for customers with a
fixed price or need to estimate a relatively accurate cost for project
completion. Customers are asking for interactive features which require
a lot of javascript (e.g. REST representations of models). Many of our
customers care deeply about security and work inside of discrete groups
among themselves. Therefore we needed a model which provided relatively
fine-grain security in the framework. Our projects use other open source
communities code to do work. We want to facilitate sharing addons with
this framework so we can solve our customers requirements with less effort.
Lastly Pyramid appealed to us because of its documentation, test coverage,
and attention to API design.

What is Ptah?

Ptah is a Python based web development framework whose goal is to allow
developers to more predictably develop complex web applications. Ptah
is cross platform and runs on Windows, OSX and Linux. Ptah is built on
top of the Pyramid framework and lets Pyramid do most of the heavy lifting.
Ptah uses SQLAlchemy for relational database abstraction/connectivity.
Ptah runs on Python 2.7 and will soon run on Python 3.2.

Ptah is also the Egyptian god of craftsmanship. He built the sky.

Ptah CMS

The ptah.cms package depends on the ptah package and contains no policy or
user interface. The pixels you see on the screen resulting from the
install document is ptah.cmsapp. The kernel of the CMS exists in ptah.cms.
If you want an alternative datastore, fork the ptah.cms package and change the
models to use mongo, zodb, etc.

The package is responsible for permissions, base content models, blob storage,
REST representation of models, “type” information (abstraction on concrete
content/data model), and application concept, as well as a traverser which
integrates a URL (you pick where) with the efficient lookup, security,
and dispatch based on URL.

If you want an example of using ptah.cms, look at ptah.cmsapp, which
contains implementation of the CMS types, such as File, Folder and Page.
This package is will probably not be useful unless you want to write a CMS
with your own opinions.

Applications

In your URL you will have one or more applications which participate in Ptah.
If you want Ptah to be invoked at the root of your site, you will define an
application as /. This application will have a database record associated with
it. Also you may want to specify a security policy to be applied to this
application (for instance, allowing authenticated users to create a Page but
not having ability to create Files or Folders.) In some systems the
application designer will want to apply security policies based on the URL
structure. One way of accomplishing this is wiring Applications into your
URL structure.

ApplicationFactory

The ApplicationFactory determines where in your URL you want the CMS to define
an ApplicationRoot. An ApplicationFactory is not persistent. For instance,
if you have a existing URL structure but want to apply a application-level
policy (such as different theme, security, workflow or other feature), the
ApplicationFactory is the mechanism to use.

ApplicationFactory is a start-up time configuration which specifies
a place in your URL to define where you want to mount an Application.
You must have at least one ApplicationFactory call or else you will be unable
to use the CMS. The ApplicationFactory will return the ApplicationRoot based
on where you mount the Application into your heirarchy.

e.g.:

factory = ptah.cms.ApplicationFactory('/', 'root', 'Ptah CMS')
ptah.config.add_route('root-app', '/*traverse',
 factory = factory, use_global_views = True)

This means / will be an ApplicationRoot with the identifier root-app.
If you go to http://host/path/to/content and there is no other pyramid
route which defines /path/to/content, Pyramid will invoke the Ptah traverser
using the ApplicationRoot located at / to look up content.

In summary, the ApplicationFactory collaborates with Pyramid to invoke an
ApplicationRoot object in your URL hierarchy.

Characteristics

		Required: Yes

		Runtime configurable: No

		Persistent: No

ApplicationRoot

An ApplicationRoot is persistent CMS container which is addressable by
URL. It is a concrete model which has a Type attribute of Application.
It is responsible for computing the URLs for a given resource or model which
is contained in the ApplicationRoot. The depth of model descendants may be
arbitrary but can be overridden by another ApplicationRoot further down the
URL structure.

You must have at least 1 ApplicationRoot object in the Ptah CMS.

Characteristics

		Required: Yes

		Runtime configurable: No

		Persistent: No

ApplicationPolicy

ApplicationFactory may take a policy argument, ApplicationPolicy.
An ApplicationPolicy currently only provides a security policy for the
ApplicationFactory. This is very useful feature if you need to alter your
security model at an ApplicationRoot but you want such a change to be
isolated to the container and applied to all descendants.

Characteristics

		Required: Yes

		Runtime configurable: No

		Persistent: No

Content, Hierarchy

Traverser

The ContentTraverser is bound to the ApplicationRoot and registers itself
with Pyramid. So if Pyramid resolves URL into an ApplicationRoot it will
use this custom traverser. A traverser is responsible for resolving the URL
into a response by pyramid. ptah.cms.Traverser
will lookup the location of the model via the ptah_cms_content table.

Traversal is only used for the content hierarchy. URL Dispatch can still
be used to participate in CMS facilities, such as REST and Security.

Characteristics

		Required: Yes

		Runtime configurable: No

		Persistent: No

TypeInformation and Actions

The type/action classes enable you to describe your model and
application “actions” at an application level. For instance,
what URL you will need to go to in the browser to generate an Edit screen
and what permission you will need to Add, Edit or Delete a model are
examples of information you pass in via the Type class. The Action
class is used to specify what URLs a user or REST API will be exposed to the
end user to perform some work. The most common example of usage is determining
what the AddForm URL is for a given Type.

Type

type name is registered with all ptah_cms_node but is not required. So
while the Type information is not persisted, the type name is
in the database. If you change the Type name, you will need
to update database records using the Type information.

Characteristics

		Required: No

		Runtime configurable: Yes

		Persistent: Yes

Action

Characteristics

		Required: No

		Runtime configurable: Yes

		Persistent: No

Node and Content

The persistent data model for Ptah CMS revolves around the following 3 tables.
You can pick and choose which level of integration you want, but there are some
ramifications of which you should be aware so future extension is easier.

Ptah attempts to NOT pollute the model namespace with internal implementation
details. Therefore things such as id, uri, type, parent, path, etc. will not
be available on the model with such names. We have referenced them separately which
does mean you need to know the SQLAlchemy Entity Property when querying,
filtering, ordering by these properties. This does mean you are free to use
id, uri, type, parent, etc. on your OWN models without concerns that you are
conflicting with Ptah.

Node

ptah.cms.node.Node is the primary table. Columns for the
ptah_cms_nodes table:

		id

		Primary key which is an internal implementation detail for SQLAlchemy.

SQLAlchemy Entity property: __id__
Database column name: id

		uri

		A required unique string which is used throughout the system to refer to
the record. A common pattern is to use URI to reference models instead of
their primary key. An example, blob+sql:9f4b24205c704dbc99a24abdd2f55350

SQLAlchemy Entity property: __uuid__

Database column name: ptah_cms_nodes.uri (VARCHAR)

		type

		This is the application-level “type” information which provides a
indirection for model re-use. A News Item is a Page with a different
ptah.cms.tinfo.TypeInformation.

		parent

		A UUID of the parent. The only time this will be null is in the
ApplicationRoot in /. For instance, a Page’s parent attribute will be
its container’s UUID.

		owner

		Owner is the URI of a Principal URI.
This field gets set by the subscriber for ptah.cms.events.ContentCreatedEvent
An example, user+crowd:301067f19db649098d51659a8b8aa572

		roles

		A ptah.utils.JSONType which will contain which roles have custom permissions.
A node with the following data would give Principal the manager role:

{u'user+crowd:301067f19db649098d51659a8b8aa572': [u'role:manager']}

		acls

		A ptah.utils.JSONType which will contain a sequence of named ACL maps.

Content

ptah_cms_content is an optional application-level data model which
provides high level attributes core to ptah.cms as well as some
optimization information. for instance, there is a path column
which we use to fast-path lookups for leaf nodes in traversal.

		path

		The internal path representation of the URL used to efficiently
traverse a pyramid URL into the internal data model. For instance:
a Page which is located at http://host/folder/front-page will be
internally represented as, /${ptah.cms.node.uuid}/folder/front-page

e.g. /cms+app:f4642bf9d7cb42fb92578763b4dc91aa/folder/front-page/

		name

		A unique name in the ptah_cms_nodes.parent container. this
is primary used for traversal. not required for url_routing or
security.

		title

		CMS title attribute. self explanatory.

		description

		CMS description attribute, self explanatory.

		view

		A URI string which can be resolved via the ptah.uri.resolve()
function. In the traditional CMS UI sense, you can default a Folder to have
a Page as the view. Anything that can be resolved can be a “view” for a
content item.

		Rules for view resolution:

		
		ptah_cms_content.view

		traversal

		created

		Datetime to mark when the record was created.

modified

Datetime to mark when the record was last modified, in UTC

effective

Datetime to mark when the record should be visible or “effective”.
DublinCore attribute in UTC.

expires

Datetime to mark when record should no longer be visible in the CMS.
DublinCore attribute in UTC.

creators

A JsonType sequence of principal URIs which are able to be resolved.
Any number of creators may be assigned to a piece of content. Often
anyone involved in the editorial process may be assigned.

subjects

Jsontype?

publisher

DublinCore attribute. Unicode.

contributors

DublinCore attribute. JsonType sequence of URIs.

Container

There is no data model/persistent difference between Content and Container.
The database records are identical. The difference is the ptah.cms.Container
model supports a Mapping-like interface so you can resolve children efficiently.
It also makes it easier for programmers to model/manipulate containment relationships.

This API is added for conveniance but is a natural way of interacting with the
hiearchy. For example, if you have a piece of content, (say, ‘front-page’) in a
Folder, how can you delete it?

Using low-level SQLAlchemy without application events:

from ptah.cms import Session, Content
page = Session.query(Content).filter_by(Content.__name__='front-page').all()[0]
Session.delete(page)
import transaction; transaction.commit()

If you delete a page going directly through the ORM; Ptah will not catch events.

Using high-level Ptah data access:

from ptah.cms import Session, Content
page = Session.query(Content).filter_by(Content.__name__='front-page').all()[0]
page.delete()
import transaction; transaction.commit()

There are several other approaches. One could be del container[‘page.html’]

URIs

In Ptah all models have a URI in the form scheme:UID. For example:

>> from ptah.cms import Session, Node
>> x.__uri__ for x in Session.query(Node).all()]
[u'cms+app:f4642bf9d7cb42fb92578763b4dc91aa',
 u'cms+page:0d60fc5c2128449898a92a90fa757173',
 u'cms+folder:326388ba897843ffbb9cf8fa824ac154',
 u'cms+page:a0b87c1d3f354183bafb3da5a94a097f']

For instance, the default User/Properties system is ptah-crowd:$UID for
a user. And for ptah.cms.ApplicationRoot it is ptah-app:$UID.

URI resolution is a core facility and contract of the system. Given any
UUID, the application should be able to load the corresponding model. This
loose coupling allows for us to store records externally to the system.

At certain times, Ptah may only have a UUID and need to resolve a Model. This is
done by registering a URI resolver. We do this so we can load a record.

An example:

>> from ptah.uri import register_uri_resolver
>> register_uri_resolver('mycustom+record', custom_record_resolver)

Your custom models will need to supply a UUIDGenerator. A
default implementation exists in ptah.uri.UUIDGenerator. On your models,
you will assign this as __uuid_generator__ = MyCustomUUIDGenerator, which
will produce a URI in your URI scheme, ‘mycustom+record:some_unique_string’.

To have a ptah_cms_nodes record entry, the only requirements are you have
a primary key (which is auto-filled upon INSERT) and a UUID. A UUID can be
anything you would like, but there is one very minor API you need to satisfy
if you come up with your own $UUID scheme.

Content vs. Container

In object/graph databases, by the time you resolve a leaf node you will have
already loaded all of the parents. This is not the case in a RDBMS system
such as Ptah. There are pros and cons to Ptah’s approach. The positive is
that you can efficiently load a record in one query without loading parents.
The con is that we will have loaded only leaf node without its parent and
lineage up the tree to the ApplicationRoot. While this is obvious if you have
object/graph database background, it is an important concept to understand
since we are working with hierachies.

See ptah.cms.load_parents

Security, Lineage, URL Dispatch

Since the ApplicationPolicy defines ACLs for an ApplicationRoot, which
contains your data model, it will be required for us to use load_parents to
walk __parent__ until we reach the ApplicationRoot; then we will have all
security roles to satisfy the Pyramid authorization security model.

The fact is you do not need to use load_parents every single time to
aggregate security settings. You only need this in ad-hoc security delegation
applications in which users can assign Roles to other users on Content. While
this model is standard in hierarchical/collaboration systems, it is not
particularly useful for many types of applications.

See How-to Ptah with URL Dispatch.

Events

See API.

 © Copyright 2011-2015, RUNYAGA, LLC.
 Last updated on Jun 14, 2015.
 Created using Sphinx 1.3.1.

_static/down.png

_static/comment-close.png

search.html

 Navigation

 		
 index

 		ptah 0.9.dev0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011-2015, RUNYAGA, LLC.
 Last updated on Jun 14, 2015.
 Created using Sphinx 1.3.1.

_static/up.png

startup.html

 Navigation

 		
 index

 		ptah 0.9.dev0 documentation »

Pyramid & Ptah Startup

config.ptah_initialize

The Pyramid Configurator must have commit() called before
config.ptah_initalize() is called on the Configurator. ptah_initialize
does extra work, for instance; setting up the authentication service and
calling ptah._init_settings (initialize settings).

This function is found at, ptah.ptah_initialize.

 © Copyright 2011-2015, RUNYAGA, LLC.
 Last updated on Jun 14, 2015.
 Created using Sphinx 1.3.1.

_static/down-pressed.png

views.html

 Navigation

 		
 index

 		ptah 0.9.dev0 documentation »

ptah.library

The public api consists of registering static resource directories
and wrapping such resources into a higher level concept, a library.

Libraries

Ptah101 has an example of creating a library. In the example it uses a
3rd party JQuery plugin Colorpicker.

This name may change. Main idea is that if your Snippet needs tags inserted into
the HEAD you can use the library feature to ensure those HTML supporting assets
exist. An example:

- The TinyMCE widget is a form field and when it is rendered it does have access to HEAD.
- In an editor open up ptah/ptah.cmsapp/tinymce.py

Definition of Library:

TinyMCE
view.static(
 'tiny_mce', 'ptah.cmsapp:static/tiny_mce')

view.library(
 "tiny_mce",
 resource="tiny_mce", # same as view.static name
 path=('tiny_mce.js', 'jquery.tinymce.js'),
 type="js",
 require='jquery')

		library parameters:

		identifier, name of the library,
resource, a static resource registered by view.static() call
path, list of files to be included in HEAD when library called
type, whether its JS, CSS, etc.
require, identifier/name of other library used for dependency resolution

So this widget uses another library called jquery. You can imagine that you will
extend TinyMCE with behaviors and inside of your extension you create a library
which will require=”tiny_mce” which will guarantee that the tinymce assets are
available.

Inside of Python if you want to include a library into a request.

Usage of Library, include:

from ptah import view
view.include('tiny_mce', request)

And your request will get all assets for the library.

view.render_includes

TBD

 © Copyright 2011-2015, RUNYAGA, LLC.
 Last updated on Jun 14, 2015.
 Created using Sphinx 1.3.1.

_static/up-pressed.png

rest.html

 Navigation

 		
 index

 		ptah 0.9.dev0 documentation »

REST

REST is first class citizen in Ptah. If you use the Content model then you get
REST for free. If you want ‘low-level’ Node interface you need to do more work.
The follow relies on Ptah App.

You will need curl and ptah running for this example.

Overview

REST API is flat. If your content participates in heirarchy the system will
take this into account when computing security.

Note that in the following values for __link__, __uri__ will be different in
than what you will see. You can figure this out. For clarity we just use data
available from our session.

Also to note there is a ptahclient.py and a rest.py which support programatic
usage of the REST API from python. You do not need to use cURL. We just use it
for these examples.

Basics

Quick look at out-of-the-box REST:

$ curl http://localhost:8080/__rest__/cms/
 {
 "name": "cms",
 "link": "http://localhost:8080/__rest__/cms/",
 "title": "Ptah CMS API",
 "description": "",
 "actions": [
 {
 "name": "apidoc",
 "link": "http://localhost:8080/__rest__/cms/apidoc",
 "title": "API Doc",
 "description": ""
 },
 {
 "name": "content",
 "link": "http://localhost:8080/__rest__/cms/content",
 "title": "CMS content",
 "description": ""
 },
 {
 "name": "applications",
 "link": "http://localhost:8080/__rest__/cms/applications",
 "title": "List applications",
 "description": ""
 },
 {
 "name": "types",
 "link": "http://localhost:8080/__rest__/cms/types",
 "title": "List content types",
 "description": ""
 }
]
 }

This is the default REST view for the cms, it is the apidoc view. More
information will describe why but once you understand more about REST this will
become clear. To be clear:

$ curl http://localhost:8080/__rest__/cms/
.. output
is the same as
$ curl http://localhost:8080/__rest__/cms/apidoc/

Let’s look at applications, currently there are quite a few since we are
experimenting with multiple applications and mount points. But for this example
we are only interested in an application whose __mount__ is ‘’ (the default).
This is the same application served at http://localhost:8080/ - back to code:

$ curl http://localhost:8080/__rest__/cms/applications
 [
 {
 "__type__": "cms+type:app",
 "__content__": true,
 "__uri__": "cms+app:c24d0e245edc413980a75f035ee3c8b2",
 "__parents__": [],
 "__name__": "root",
 "__container__": true,
 "title": "Ptah CMS",
 "description": "",
 "view": "",
 "created": "2011-10-12T04:04:08.550000",
 "modified": "2011-10-12T04:04:08.550000",
 "effective": null,
 "expires": null,
 "__mount__": "",
 "__link__": "http://localhost:8080/__rest__/cms/content:/cms+app:c24d0e245edc4
 13980a75f035ee3c8b2/"
 }
]

Now lets see the application. Note in future the default will not show children
since that will not work for large containers and will need batching support.
Let’s just see how it is today:

$ curl http://localhost:8080/__rest__/cms/content:/cms+app:c24d0e245edc413980a75f035ee3c8b2/

 {
 "__type__": "cms+type:app",
 "__content__": true,
 "__uri__": "cms+app:c24d0e245edc413980a75f035ee3c8b2",
 "__parents__": [],
 "__name__": "root",
 "__container__": true,
 "title": "Ptah CMS",
 "description": "",
 "view": "",
 "created": "2011-10-12T04:04:08.550000",
 "modified": "2011-10-12T04:04:08.550000",
 "effective": null,
 "expires": null,
 "__link__": "http://localhost:8080/__rest__/cms/content:/cms+app:c24d0e245edc41
 3980a75f035ee3c8b2/",
 "__contents__": [
 {
 "__name__": "front-page",
 "__type__": "cms+type:page",
 "__uri__": "cms+page:b4d90058672a4c11991dd5eb11b118fd",
 "__container__": false,
 "__link__": "http://localhost:8080/__rest__/cms/content:/cms+page:b4d90058672
 a4c11991dd5eb11b118fd/",
 "title": "Welcome to Ptah",
 "description": "",
 "created": "2011-10-12T04:04:08.557000",
 "modified": "2011-10-12T04:04:08.557000"
 },
 {
 "__name__": "folder",
 "__type__": "cms+type:folder",
 "__uri__": "cms+folder:f396f8fe8a684b62b11c90c3e6bb09ba",
 "__container__": true,
 "__link__": "http://localhost:8080/__rest__/cms/content:/cms+folder:f396f8fe8
 a684b62b11c90c3e6bb09ba/",
 "title": "Test folder",
 "description": "",
 "created": "2011-10-12T04:04:08.559000",
 "modified": "2011-10-12T04:04:08.559000"
 }
]
 }

Lets look at the apidoc for the application. These are the REST actions that are
available. By default Anonymous can create a Page, therefore create is an
available action (recognized its not a sensible default and will be changed in future):

$ curl http://localhost:8080/__rest__/cms/content:/cms+app:c24d0e245edc413980a75f035ee3c8b2/apidoc
[
 {
 "name": "info",
 "link": "http://localhost:8080/__rest__/cms/content:/cms+app:c24d0e245edc41398
0a75f035ee3c8b2/",
 "title": "",
 "description": "Container information"
 },
 {
 "name": "apidoc",
 "link": "http://localhost:8080/__rest__/cms/content:/cms+app:c24d0e245edc41398
0a75f035ee3c8b2/apidoc",
 "title": "apidoc",
 "description": "api doc"
 },
 {
 "name": "create",
 "link": "http://localhost:8080/__rest__/cms/content:/cms+app:c24d0e245edc41398
0a75f035ee3c8b2/create",
 "title": "create",
 "description": "Create content"
 }
]

Login

To login via REST you need to get a AUTH-TOKEN, we do this by issueing a GET:

$ curl -d "login=admin&password=12345" http://localhost:8080/__rest__/login
{
 "auth-token": "3b0ccaac40e16f2e74c7d00b2c5b2f0e4e95a5beuser%2Bcrowd%3A9a529386a
61c4f20a2481da6a9f455cc",
 "message": ""
 }

Now that we have the auth-token we will need to pass this as a HTTP HEADER, X-AUTH-TOKEN:

$ curl -H "X_AUTH_TOKEN:3b0ccaac40e16f2e74c7d00b2c5b2f0e4e95a5beuser%2Bcrowd%3A9a529386a
61c4f20a2481da6a9f455cc" http://localhost:8080/__rest__/cms/

This request is an authenticated request to Ptah with the admin user. Currently
you will not see any difference but this will change. Let’s see it with apidoc.

Authenticated Example

Content actions can be protected by permissions. Let us presume that our CMS
root’s __uri__ is cms+app:c24d0e245edc413980a75f035ee3c8b2 and it’s __link__ is
http://localhost:8080/__rest__/cms/content:/cms+app:c24d0e245edc413980a75f035ee3c8b2/
. Let’s look at APIDOC not logged in:

$ curl http://localhost:8080/__rest__/cms/content:/cms+app:c24d0e245edc413980a75f035ee3c8b2/apidoc

[
 {
 "name": "info",
 "link": "http://localhost:8080/__rest__/cms/content:/cms+app:c24d0e245edc413980a75f035ee3c8b2/",
 "title": "",
 "description": "Container information"
 },
 {
 "name": "apidoc",
 "link": "http://localhost:8080/__rest__/cms/content:/cms+app:c24d0e245edc413980a75f035ee3c8b2/apidoc",
 "title": "apidoc",
 "description": "api doc"
 },
 {
 "name": "create",
 "link": "http://localhost:8080/__rest__/cms/content:/cms+app:c24d0e245edc413980a75f035ee3c8b2/create",
 "title": "create",
 "description": "Create content"
 }
]

Now let’s look at APIDOC as a logged in user:

$ curl -H "X_AUTH_TOKEN:8725da7fdf14e1442f1ed4670f3b61614e95a6bcuser%2Bcrowd%3A9a529386a61c4f20a2481da6a9f455cc" \
 http://localhost:8080/__rest__/cms/content:/cms+app:c24d0e245edc413980a75f035ee3c8b2/apidoc

[
 {
 "name": "info",
 "link": "http://localhost:8080/__rest__/cms/content:/cms+app:c24d0e245edc413980a75f035ee3c8b2/",
 "title": "",
 "description": "Container information"
 },
 {
 "name": "apidoc",
 "link": "http://localhost:8080/__rest__/cms/content:/cms+app:c24d0e245edc413980a75f035ee3c8b2/apidoc",
 "title": "apidoc",
 "description": "api doc"
 },
 {
 "name": "create",
 "link": "http://localhost:8080/__rest__/cms/content:/cms+app:c24d0e245edc413980a75f035ee3c8b2/create",
 "title": "create",
 "description": "Create content"
 },
 {
 "name": "delete",
 "link": "http://localhost:8080/__rest__/cms/content:/cms+app:c24d0e245edc413980a75f035ee3c8b2/delete",
 "title": "delete",
 "description": "Delete content"
 },
 {
 "name": "move",
 "link": "http://localhost:8080/__rest__/cms/content:/cms+app:c24d0e245edc41398
 "title": "move",
 "description": "Move content"
 },
 {
 "name": "update",
 "link": "http://localhost:8080/__rest__/cms/content:/cms+app:c24d0e245edc413980a75f035ee3c8b2/update",
 "title": "update",
 "description": "Update content"
 }
]

Available Types

We can see a list of all available types available in the system. The Type
information contains:

		__uri__, this is a resolvable string which is unique to the type information

		name, this is the internal type name which does not have to be unique

		title, human readable title of the type information

		permission, permission to create models of this type

		fieldset, schema of the type. if you do not define one the system
will create one by introspecting your model.

Let’s see all registered types:

$ curl http://localhost:8080/__rest__/cms/types/
[
 {
 "__uri__": "cms+type:app",
 "name": "app",
 "title": "Application",
 "description": "",
 "permission": "__not_allowed__",
 "fieldset": [
 {
 "type": "text",
 "name": "title",
 "title": "Title",
 "description": "",
 "required": true
 },
 {
 "type": "textarea",
 "name": "description",
 "title": "Description",
 "description": "",
 "required": false
 }
]
 },
 {
 "__uri__": "cms+type:file",
 "name": "file",
 "title": "File",
 "description": "A file in the site.",
 "permission": "ptah-app: Add file",
 "fieldset": [
 {
 "type": "text",
 "name": "title",
 "title": "Title",
 "description": "",
 "required": true
 },
 {
 "type": "textarea",
 "name": "description",
 "title": "Description",
 "description": "",
 "required": false
 },
 {
 "type": "file",
 "name": "blobref",
 "title": "Data",
 "description": "",
 "required": true
 }
]
 },
 {
 "__uri__": "cms+type:folder",
 "name": "folder",
 "title": "Folder",
 "description": "A folder which can contain other items.",
 "permission": "ptah-app: Add folder",
 "fieldset": [
 {
 "type": "text",
 "name": "title",
 "title": "Title",
 "description": "",
 "required": true
 },
 {
 "type": "textarea",
 "name": "description",
 "title": "Description",
 "description": "",
 "required": false
 }
]
 },
 {
 "__uri__": "cms+type:page",
 "name": "page",
 "title": "Page",
 "description": "A page in the site.",
 "permission": "ptah-app: Add page",
 "fieldset": [
 {
 "type": "text",
 "name": "title",
 "title": "Title",
 "description": "",
 "required": true
 },
 {
 "type": "textarea",
 "name": "description",
 "title": "Description",
 "description": "",
 "required": false
 },
 {
 "type": "tinymce",
 "name": "text",
 "title": "Text",
 "description": "",
 "required": true
 }
]
 }
]

Create content

Let us create a Page whose name is ‘foobar.html’.

There is a special feature of container.create REST action which allow you to create type
and update all values in one operation. Here is example of creating ptah.cmsapp.content.Page:

$ curl -H "X_AUTH_TOKEN:8725da7fdf14e1442f1ed4670f3b61614e95a6bcuser%2Bcrowd%3A9a529386a61c4f20a2481da6a9f455cc" \
 --url "http://localhost:8080/__rest__/cms/content:/cms+app:c24d0e245edc413980a75D5D5f035ee3c8b2/create?tinfo=cms+type:page&name=foobar.html"
{
 "message": "cms+page:032e6b19a99c40fba264c1aeeaf08254"
}

tinfo is the type’s __uri__. You can get a list of available types by
querying __rest__/cms/types for instance, the default types available with ptah.cmsapp are:

		cms+type:page

		cms+type:folder

		cms+type:file

The response of the message is the new URI for the content item. Let’s just CURL
the item:

$ curl http://localhost:8080/__rest__/cms/content:/cms+page:032e6b19a99c40fba264c1aeeaf08254
{
 "__type__": "cms+type:page",
 "__content__": true,
 "__uri__": "cms+page:032e6b19a99c40fba264c1aeeaf08254",
 "__parents__": [
 "cms+app:c24d0e245edc413980a75f035ee3c8b2"
],
 "__name__": "foobar.html",
 "__container__": false,
 "title": "",
 "description": "",
 "text": "",
 "view": "",
 "created": "2011-10-12T14:44:01.640000",
 "modified": "2011-10-12T14:44:02.669000",
 "effective": null,
 "expires": null,
 "__link__": "http://localhost:8080/__rest__/cms/content:/cms+page:032e6b19a99c40fba264c1aeeaf08254/"
}

Python REST Client

Two files are of interst. devapp/ptahclient.py which is a python REST client for
Ptah. And rest.py which utilizes ptahclient.py.

 © Copyright 2011-2015, RUNYAGA, LLC.
 Last updated on Jun 14, 2015.
 Created using Sphinx 1.3.1.

ptah_app_vs_manage.html

 Navigation

 		
 index

 		ptah 0.9.dev0 documentation »

Ptah Manage vs. Your App

Overview

By following the instructions you will end up with ptah (the library) and
scaffolding which will have generated your application. If you goto /
you will see your application which was created by scaffolding. If you
goto /ptah-manage/ you will see Ptah Manage.

Ptah Manage

Ptah Manage will provide introspection and management of the applications inside your system. A goal we are striving for is to expose all of the configuration & registration inside a web ui. We do not aim to support editing knobs for everything. We do want to provide visibility into all registrations.

You can access Ptah Manage by going to http://localhost:8080/ptah-manage/

The default “modules” for Ptah Manage are:

		Crowd

A primitive user management module. Your App uses crowd for its user authentication. This UI is fairly broken at the moment.

		Form fields

UI listing for each ptah.form.field that is registered with Ptah. If you create a new field and define a preview for the Field - it will show up here. As new fields become available or you create them - you can see them here.

		Introspect

Ability to view registration for each package. For a package you will be able to see Content Types, Event subscriber, Uri resolvers, Views and Routes.

		Permissions

Will provide listing of each permission map and what module created it.

		Ptah CMS Applications

Ptah supports a concept of Applications. Each application will be listed here and the applications’ URL mount point.

		SQLAlchemy

Listing of all tables being used by Ptah applications and models. Any editing of models will not throw application level events. This is provided as a convienance.

		Settings

Shows all values for the current running process’s settings file. Pyramid settings files are the way you manage your application configuration. You will almost always have 2 or more settings files, one from development and one for production. If you have configuration specific to your deployment; put the configuration in a settings file.

		Templates

All templates which are registered through Ptah/Memphis will show up. They are grouped by package in which the template is defined. All templates are overridable.

Ptah 301 App

The Ptah301 scaffold is Your App.

Your App provides a primitive UI which provides a starting point for you to create an application. You can see your application at /

Your App contains:

		Actions

In the left hand side you will see “actions” which the user can perform. Common actions are Add content, Edit and Sharing. This is

using functionality currently inside of Ptah. Most likely you will not
be interested in using this.

		Items/Containers

The first thing you see in Your App is a folder listing interface. This is a listing of content inside the root application. A Container can support Rename, Cut, and Remove actions which may be applied to its children. You create content types and they will appear inside

of the Add Action.

		Content Types

Your App ships with 3 basic content types: Page, File, and Folder. These are just implementations of ptah.cms models. Create your own. It is very easy. And the purpose of Your App. Customizing it.

		Forms

There are very basic Edit and Add forms which are used to autogenerate the forms for a model. Again these are default implementations and do not expect them to become very sophisticated. These forms use functionality inside of Ptah. You can follow the forms example to create your own.

		Views

A set of views which will generate the layout of Your App. Also known as the “skin”, “o-wrap”, “ui”, “template” which puts the the pixels on the screen. Layout’s are how this is accomplished but you do not need to use layouts.

		Permissions

Your App defines 3 permissions and 3 roles: Add page, Add file, and Add folder permissions as well as ‘Viewer’, ‘Editor’ and ‘Manager’ roles. It also provides an example policy of which Roles are, by default, assigned what permissions.

Conclusion

Ptah Manage is useful for managing configuration and providing visibility into how your application(s) are configured. It’s prime goal is to make you feel comfortable with what, how, where your application is configured. If you do not feel comfortable with Ptah Manage - please let us know. Asking for additional features (search for configuration variables) is out of scope. If the information is there but you have to click around a bit – we can fix this with UI, else let us know.

Ptah 301 scaffold is a default implementation of the ptah.cms and the software stack. It is your application. You are building a web application, right? So here is a start.

 © Copyright 2011-2015, RUNYAGA, LLC.
 Last updated on Jun 14, 2015.
 Created using Sphinx 1.3.1.

unique.html

 Navigation

 		
 index

 		ptah 0.9.dev0 documentation »

What Makes Ptah Unique

What it ain’t

Ptah is not an application. You build software. You do not extend it.
It’s quite high level and should get you where you are going quickly. But
it will not do your job (building an application) for you.

Pyramid

Since Ptah is built on top of Pyramid you should familiarize yourself
with what makes Pyramid Unique [https://docs.pylonsproject.org/projects/pyramid/1.2/narr/introduction.html#what-makes-pyramid-unique]

Eat What You Pay For

Many frameworks are not known for their “eat what you pay for”. Ptah was
designed so you can use most of the features without having to agree to
all of the choices. You can pick what you like and use only what you like.

Performance

Since Ptah uses a RDBMS (via SqlAlchemY) Ptah is much much slower than your
traditional “hello world” benchmarks. While Pyramid may get 3000+ req/second
serving a response, there simply is no comparable benchmark for web
applications/content frameworks. We aim to stay between 110-130 request/second
(per single threaded python process). Today on 2010 macbook pro we get 230-240
requests/second. Remember we are applying security and doing heavily lifting.
Python, on a whole, is reasonably fast. Pypy should make us go between
1.5x and 3x faster.

Evolution not Revolution

You can plug-in Ptah into your web application after it has been
deployed. You should not have to alter your web application to
stitch in Ptah. For instance, you have a web application which
has already been built (you have a lot of routes, for example) - you
can decide where you want the CMS to participate.

Data model

Ptah specifies a relational data model which varies with degrees of
features (ptah is simpler than ptah.cms which, in turn, is simpler
that ptah.cmsapp). We chose a dirt-simple relational data model that
emphasizes pragmatism over purity. It should be approachable by
anyone who has previous database experience.

		ptah_cms_nodes

		ptah_cms_content

Security

The most difficult aspect of complex web frameworks is consistenty enforcing
authorization policies. This is a critical aspect when there is a large
aftermarket of add-ons and a vibrant community of developers contributing
and re-using software.

A security story:

Bob Dobbs creates a Poll component which has a number of features
you would like to re-use. You install it and configure it to
show up in /polls. To view a poll you GET /polls/$id and to
vote you POST /polls/$id. The only integration with Ptah is that
he wanted it to be accessible through the auto-generated REST API.
So Polls have a entry in ptah_cms_nodes (for its URI feature).

After you have used the Poll for some time you find yourself with
the requirement, "Some Polls need to be displayed on a particular
page in your website, unfortunately, the section on the website
has security restrictions preventing only "Internal Staff" or a similar
role to see content in this section. You have never needed security
on any Polls. Fortunately since this Poll add-on participates with
the ptah_cms_nodes table, you can simply set the `parent` attribute
(which would have been null on Polls until this date) to the Page
where you will be showing the Poll.

After doing that anyone who attempts to goto /polls/$secure_pollid
but they do not have the correct roles will get a Forbidden error.
Also the REST api for that poll will also be protected without any
future work from you.

Flat is Better than Nested

While you can treat the content in the Ptah CMS as “heirarchical”, in reality,
it is flat. We have 2 attributes we use for mapping on to hierarchies:
ptah_cms_nodes.parent_uri and the ptah_cms_content.path columns. The path
attribute is how we efficiently do fast look ups. Walking parent/children
relationships in a RDBMS is inefficient, say, compared to graph databases such
as ZODB or Neo4J. RDBMS aren’t graphs. The REST API is another example of this
mantra.

REST as First Class Citizen

By participating in the basic ptah.cms.content datamodel; your content can be
READ/UPDATED/DELETED via a REST URL without any work from you. And security
will be applied to your models. Install Ptah and curl
http://localhost:8080/__rest__/cms/ - we believe you won’t be disappointed.

URIs Everywhere

A core feature of this system is data sources will be integrated gratuitiously.
One thing that Plone has taught us is that if there is a service/persistence
engine; people will want to integrate into it (and expect it to participate
in all of the CMS services). URI are the token which represents a record,
be that a user record or a content record.

Easy to Fork

A goal to keep the software small is to encourage people to fork Ptah and
use it with different storages. Until we are convinced otherwise the Ptah
project will use a relational database. Please fork Ptah and replace
RDBMS with Mongo or some other persistence system and tell us.

Readability

When there is a decision to be made between legiblity of source code and
performance we will opt for the readibility avenue. Follow pep8 guidelines and
consistent naming.

Future Proof

Ptah aims to be the first comprehensive CMS framework which will work with
Python 3.

 © Copyright 2011-2015, RUNYAGA, LLC.
 Last updated on Jun 14, 2015.
 Created using Sphinx 1.3.1.

content.html

 Navigation

 		
 index

 		ptah 0.9.dev0 documentation »

Example of Content Model

Create a file called link.py inside of your scaffolding. You can copy
and paste this code into the file called link.py; restart paster and
click Add Content or look at SQLAlchemy in Ptah Manage.

A simple model:

import sqlalchemy as sqla
from pyramid.httpexceptions import HTTPFound

from ptah import view, form, cms
from ptah import checkPermission

class Link(cms.Content):
 __tablename__ = 'ptah_cms_link'
 __type__ = cms.Type('link', permission=cms.AddContent)
 href = sqla.Column(sqla.Unicode)

@view.pview(context=Link, permission=cms.View, layout='page')
def link_view(context, request):
 """ This is a default view for a Link model.
 If user has permission to edit Link a form will be displayed.
 If user do not have ability to edit Link; they will be redirected.
 """
 can_edit = checkPermission(cms.ModifyContent, context)

 if can_edit:
 vform = form.DisplayForm(context, request)
 vform.fields = Link.__type__.fieldset
 vform.content = {
 'title': context.title,
 'description': context.description,
 'href': context.href}
 vform.update()

 # Uncomment below if you do not want the layout wrapper
 #return vform.render()

 layout = view.query_layout(request, context)
 return layout(vform.render())

 raise HTTPFound(location=context.href)

Why Subclass from Content?

The Ptah Content model is quite high level and provides a lot of functionality.
By inherienting from :py:class:ptah.cms.content.Content you get the
following:

		Automatically get polymorphism with ptah_cms_node table.

		You do not need to specify a “uri resolver”

		You will get fieldset representation (schema-ish) from model

		You get security at the model level

		Your model can participate in REST api without any work

		Your model will have events thrown upon creation/delete/update

		Automatically generated Add/Edit forms

		Models will be available in Application content heirarchy

Why Not Subclass from Content?

If you do not want to subclass from ptah.cms.content.Content there are two
other options. The first is you do not have to partcipate in SQLAlchemy at
all. You can use Ptah as a library and instrument the API yourself.

The other option is your model can subclass :py:class:ptah.cms.node.Node

 © Copyright 2011-2015, RUNYAGA, LLC.
 Last updated on Jun 14, 2015.
 Created using Sphinx 1.3.1.

_static/comment-bright.png

